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ABSTRACT

The nonlinear evolution of unstable sound waves in a uranium

plasma has been calculated using a multiple time-scale asymptotic

expansion scheme. The fluid equations used include the fission power

density, radiation diffusion, and the effects of the changing degree of

ionization of the uranium atoms. The nonlinear growth of unstable waves

is shown to be limited by mode coupling to shorter wavelength waves which

are damped by radiation diffusion. This mechanism-limits the wave pres-

sure fluctuations to values of order 6P/P - 10-5 .in the plasma of a

typical gas-core nuclear rocket engine. The instability is thus not

expected to present a control problem for this engine.
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1. INTRODUCTION

The objective of this work is to analyze the nature of instabilities

in fission reactors in which the uranium operates at a temperature sufficiently

high so as to become ionized. The principal impetus for study of such uranium

plasma reactors has derived from the concept of a high specific impulse nuclear

gas-cored rocket engine. 2) However,, fissioning plasma reactors may also lead

to development of a new class of magnetohydrodynamic generators ( 3 ), and perhaps

may even have application to the direct nuclear excitation of lasers.

The equations describing a uranium plasma involve the coupling of the

plasma "fluid" dynamics to the neutron transport and also to the radiation trans-

port in the system. In such a reactor, the plasma would be enclosed (or

nearly enclosed) by a neutron moderator - which is important in that it returns

the thermalized neutrons back to the plasma core - while radiation transport

dominates the transport of energy within the plasma. As a theoretical structure,

then, the coupled systen of equations can be charted symbolically as:

Plasma Fluid Equations
or

Hydromagnetics

I ;~~~~~~~~~~~~~~~~
Radiation
Transport

Figure 1.1

The specific set of equations involved are listed as equations (2.24)-(2.28) in

the next section of this report.

The major application for the fissioning uranium plasma reactor (on

which significant effort has been expended) is that of the gas-cored nuclear

rocket engine shown below.

I I
Il
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Figure 1.2

In general, this system consists of a chamber in which a fissioning uranium

plasma (at - 5 - 104 °K) is maintained in the central region and radiatively

heats the propellant hydrogen gas which flows around the main core and is

subsequently ejected from the rocket nozzle. The chamber is surrounded by a

moderator which slows down the fission neutrons and returns them to the

uranium core.

It is clear that if instabilities occur in this device, leading to

either a fine-scale plasma turbulence or larger scale oscillations, they could

well have undesirable results - such as enhancing the uranium fuel ejection

from the rocket. An understanding of these processes (and their possible

controllability) is of basic importance for the feasibility of constructing
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such plasma-cored rocket engines.

In a more general context, it should also be noted that the direct

excitation of plasma motion and plasma waves by a fissioning plasma reactor

may have useful applications to other energy conversion devices such as MHD

generators.

One source of instability is the growth of sound waves(4 '5 ) in the

plasma due to the fission power density, Pfiss. The instability mechanism

involved can be understood as follows: Consider a standing sound wave in a

bounded region of fissioning plasma with a constant background thermal neutron

density. In the wave compressions the fission power density, Pfiss' increases

due to the increased uranium density, and in the rarefactions Pfiss decreases.

This results in an increased pressure gradient associated with the wave which

in turn leads to a transfer of fission power to the wave. It occurs because

the wave compression tends to expand more rapidly than it was compressed. How-

ever, competing with this is the fact that radiation tends to transport the

extra thermal energy out of the wave compressions. Radiation diffusion smooths

out the temperature fluctuations of waves more rapidly the shorter their wave-

length. This results in a critical wavelength, Xcrit' below which waves are

stable and above which they are unstable.

We have calculated the nonlinear evolution of such unstable waves

to determine their limiting amplitude. The mechanism that finally limits

their amplitude is the mode coupling of unstable waves in the wavelength range

A > Acrit to radiation damped waves in the range A < Acrit

Our conclusion is that this mechanism "turns off" the instability

after the wave amplitudes have reached relatively small values for most sys-

tems of interest. Relative pressure fluctuations of order 6P/P 10 - 7 to

10
-
5 are calculated to occur for a slab of uranium plasma with parameters cor-

responding to the NASA-Lewis design engine. Consequently this instability is

not expected to present a control problem for this engine. The instability

would only become a problem for devices of a size much larger than those cur-

rently contemplated.
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A second mechanism for instability derives from the fact that the

fission power density in the reactor cavity depends on the relative fluid

velocity between the neutron gas and the uranium plasma. For low neutron

thermal energies (below 1 eV which is the lowest neutron energy for resonant

capture by U2 35 ) the neutron induced fission power increases as the relative

fluid velocity increases. This "Doppler effect" enhances the fission power

in some parts of a sound wave and not others and can give rise to growth of

the wave. This process is analysed in Chapter 7. Our conclusion is that

nonlinear effects also limit the amplitude of waves in this case to small

values which are not expected to cause problems for the gas-core engine.
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2. DERIVATION OF FLUID EQUATIONS FOR FISSIONING U-PLASMA

In this section the fluid equations for a uranium plasma will be
derived from the equations for the particle distribution functions. This has
the advantage that one can see physically the assumptions that are involved
in the fluid description and where future generalizations might be made.

Define a distribution function F so that

F(a, v, x, t) dv da = (average number of U atoms or ions (2.1)
in dv in states a, da.)

If the states labelled a are discrete for part of the a range, then F
involves a series of 6-functions in a. The corresponding velocity distri-

bution function for U atoms in any charge state is

f f= F da , (2.2)

and the total number density for all U atoms and ions is

Nu = ff dv = E Nui ) , (2.3)

where i goes over all the partial densities for ions that have lost i

electrons.

Similarly the fluid velocity Vu and pressure tensor PuI
for the U-component of the plasma are written

NuV = dv v f , (2.4)

PI N KT I = M f dv f (v - V) (v - (2.5)

where we have assumed a local velocity distribution close to a Maxwellian
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with a temperature T. Viscosity, which derives from the off-diagonal parts

of Pu , will be neglected.

Now the transport equation is

at + v. ax Cu (2.6)

where Cu dx dv da = rate of change of U-atoms in dx dv da due to atomic

processes, fission processes, and interaction with the radiation field (i.e.,

C includes all microscopic effects).

Taking moments /dv da and /v dv du of (2.6) gives the mass and

momentum transport equations,

at + a_ (NuV) = fC u dv doa

at(N u aT a (NVV-) C v dvat _u-u'M x u _x U-u-u

For the energy transport equation we operate on (2.6) with

fdv da [-M (v - V-u) 2 + E() j

thermal energy "internal energy" of
density excluding ) ionization excitation
translational K.E.) and radiation

d .

(2.7)

(2.8)

Wri ting

fd- da aF E(:) = a (N (2.9)
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u = dv (v - ¥u) )v - Vu)2 f = heat flux
the resulting energy transport equation becomes,

the resulting energy transport equation becomes,

d 3 NuKT)
WE \ZNKT/ + t(Nu~ )+ a NuV£) +(NU ) + . (NUVO) +at ~ _ u

5 NKT a3
NuKT-x Vu +x

: fdv da Cu [1M (v - V)2 +]

where

dE -t u ax

In order to obtain a closed set of 1-fluid equations we must next

consider the meaning of the collision terms in (2.7) - (2.10) and the role

*of the electrons.

Number Density Equation

(2.10)

(2.11)

There is no local source of U atoms, and we shall neglect the local

sink due to fission. We also neglect the accumulation of a spectrum of fis-

sion fragments which would form a new ion species. Under these circumstances

f Cu dv da - 0, so that equation (2.7) gives

aN
u + . (NuV) = 0

3t 3x u-u (2.12)

for the continuity equation for U number density.

However, for the electrons there are sources and sinks due to the

rapid atomic processes of recombination and ionization. These atomic processes
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occur on time scales much less than those associated with the fluid dynamics.

Thus a value for the electron number density Ne will be assumed corresponding.

to local thermodynamic equilibrium

Ne = Nu Z (2.13)

where Z is the mean charge state of the U atoms and must be calculated from

the Saha formulas.

Momentum Equation

Fission does not change the average local momentum density of the

plasma. The electrons and ions however couple strongly through collisions

so that V = V
u
, T

e
= T T, and Z m fv dv C = 0.

-e e u

Thus adding (2.8) to it's counterpart for the electrons and treating

m/M
u
<< 1 gives

M St (NuV(u) + ax Ne)KT (N uVu ) = 0 (2.14)

Note, we could include a photon pressure in (2.14) but have not done so

at this point.

Energy Equation

Now the local energy density (excluding only translational kinetic

energy) is

fdv d- [(Lexct. + £ioniz+ eRad ) + L M(v- V)2] f , (2.15)

where the quantity c in (2.10) has been split up into its contributions from
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internal energy of excitation, ionization and radiation. The ionization energy

is viewed as similar to internal excitation energy for the atoms. The various

atomic processes involved undergo energy interchanges with the thermal velocity

component and not the ordered kinetic energy density of the plasma, which is why

we chose to take the above moment for the energy equation. The quantity (2.15)

changes due to collisions, but when summed over atoms and electrons its remain-

ing changes (due to C) are those due to fission and radiation, i.e.,

Z fdv da C [(&exct + ioniz + £Rad) + M(v - Vu)2] f
e,u

Pfiss + P (2.16)

where

Pfiss = fission power density in frame of the U-plasma.

(2.17)

PV = nett local radiation energy absorption less emission

Adding the electron version of (2.10) to the ion energy equation

(2.10) then gives the total energy transport equation for the fluid,

dt[32 NKT(I + )j+ (Nu) + Z- (V Nt ) + ( u (1 + x) NuKT -- v

(u 
+

e) ss + P (2.18)
ax Re) Pfiss + V

The thermal conduction terms su and qe will be neglected since the most

important energy transport is due to radiation as expressed by Pv. The
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quantities Pfiss and PV are next required in order to complete the fluid

equations.

Fission Power Density, Pfiss

Suppose v
o

is the average thermal velocity of the neutrons, No
their number density, and a the cross-section for neutron induced fission
events in which an energy Q is released in fission fragments. The fission

power density then follows from

Pfiss dx dt

(Nov
o
dx dt Q)

(1/Nua)

total path traveled 
(by n

o
s in dx dt Q

(m.f.p. for fission)

= N NN vo a Q

We have assumed a to be independent
between the neutrons and U nuclei and taken a

the neutron distribution function, i.e., a =

for Pfiss would be

Pfiss

of the relative velocity

value for it averaged over

a(vo,T). A more precise form

ff dv dv
u

vo- vlQ' fo(v ) fu(vu)alv -v)I ~ -;o -u -0-u ~-o u u -u _

where Q' is the fission kinetic energy release in the rest frame of the

plasma. fo and fu are velocity distribution functions for the neutrons and

U nuclei. The simpler model (2.19) will be used for most purposes.

Pfiss (2.19)

(2.20)
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Radiation Transport term, P

In the interior region of the U plasma the radiation absorption

length is usually much less than the gradient scales of the plasma, i.'.c.,

the medium is optically thick. Under these circumstances the absorption

coefficient can be approximated by the Rosseland mean value, KR, given by

16 oTT3
KR 3 kT ' (2.21)KR - 3 kR

where a is the Stefan-Boltzmann constant, T the temperature, and kR the

Rosseland mean opac.ity. The radiation energy flux is then given by

S = - KR V T (2.22)

and the divergence of this, V-S, gives the local radiation power, Pa,

t. e.,

Pv V · [KR T ] (2.23)

The quantity KR is thus an effective thermal conductivity due to radiation

transport.

Summary of Fluid Equations

Equations (2.12), (2.13), (2.18), (2.19) and (2.23) now form a

complete set of fluid equations. Since they are no longer necessary, we shall

drop the subscripts u on the total ion number density Nu and fluid velocity

V
u
, and also drop the bars over £ and Z. The resulting system is,

+ (NV) = 0 (2.24)
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a v + 1 a NKT (1 + Z) = (2.25)
-- Tx - MN 3x

dt 3[ NKT (1 + Z)]j+ t (NE) + - (NcV) + - (1 + Z) NKT a
-- (2 + Z) NKT x2X -

(2.26)

Pfiss + V * (KR V T)

Pfiss = N No o Q (2.27)

16 aT3
KR 3 kR (2.28)

where Z, E, must be calculated from the Saha relations for a thermal

equilibrium U plasma.

Comments on the Energy Equation and Specific Heats

If we write the total "internal energy" (which includes thermal

kinetic energy) as

E = 2 NKT (1 + Z) + NE (2.29)

then equation (2.26) can also be written

dE = 0-+ E 3- · V + P V = (2.30)
dt 3x ax -

where the pressure P = (1 + Z)NKT. This is the usual form of the energy

equation (see Chapman & Cowling, Mathematical Theory of Nonuniform Gases,

p.52, Eq. 4).
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One can also derive an equation that expresses local energy con-

servation for the total energy. Multiplying (2.25) by MNV, adding the

result to (2.26) and using (2.24) leads to

at -MNV2 +3 NKT (1 + Z) + NI
t 2 1 MNV2 +-

+ ax * MNV 2 + V NKT (1 + Z) + NVc - KR

Pfiss (2.31)

This shows that the total energy density in the medium is

Etot. 2 MNV2 +E . (2.32)

The specific heats can be expressed in terms of these quantities

(see Landau and Lifshitz, Stat. Mech. p. 45, or Chapman and Cowling, p.39).

Thus

Cv (SE)V Cp = ([E + Pv] (2.33)
v ~v = T aT ,p

where v is the gas volume. From (2.29) we see

Cv = NK [32 (1 + Z + TZT) + ] (2.34)

The effective number of degrees of freedom, n, in the plasma can

be defined by

E - n NKT (2.35)
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so from (2.29)

n = 3 (1 + Z) + 2E (2.36)
KT

However, since n is a function of T, this is not a particularly useful

quantity in that the quantity y - Cp/C
V

V (1 + 2).

The first term, dE/dt, of (2.30) can also be written C
v
dT/dt.



3. NUMERICAL RESULTS FOR THE AVERAGE IONIZATION ENERGY £ AND AVERAGE
CHARGE NUMBER Z OF THE U-IONS

The functions £ and Z in this section are derived from some com-

puter results kindly supplied by Dr. R. T. Schneider(6 )
. They are based on

the UPLAZ-2 program (developed by the group in the Department of Nuclear

Engineering Sciences, University of Florida) which calculates the composition

of uranium plasma as a function of plasma pressure and temperature assuming

local thermodynamic equilibrium.

The average ionization energy £ is defined as

Z N(i) 
£ - u 1 (3.1)

Z N(
u

where the sum goes over all ion charge states, and ci is the total energy

required to produce an ion which has lost i electrons (including energy

shifts due to the density effect), and N(i) is the number of ions in

ionization state i per cm3.

The energy ei can be written as a sum due to successive ioniza-

ti ons,

1i = (E1 - AE1 ) + (E2 - AE2) + . .(Ei - AEi)' o = 0, (3.2)

where E1 is the energy required for the process

U(O) + U+ + e ,

and E2 for U+ - U++ + e, etc., and the AE's give the decrease in these

energies due to the density effect.
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The average charge number Z of the ions is also required and is

defined by

Z Zi Nui)
Z 1 (3.3)

Z Ni)

The quantities Nui ) AE
i
, EZiNu) and (Z + l)Nu = Ntotal

were supplied as functions of T and Ptot (total pressure) by UPLAZ-2,

and after some computation the tables and graphs 3.1 and 3.2 of

(T, Ptot ) and Z(T, Ptot ) were obtained.
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Ptot = 10 Atm. ot = 100 Atm. Ptot= 500 Atm. ot = 1000 Atm.

T Z Z Z Z

120,000 9.552 8.273 7.053 6.850

100,000 7.951 6.490 6.058 6.058

80,000 6.220 5.843 5.375 4.993

60,000 5.421 4.810 4.231 4.139

40,000 3.692 3.463 3.168 3.159

20,000 1.913 1.368 .848 .682

8,000 .159 i .057 .031 .025

5,000 .006 .002 .001 .001

Ptot= 10 Atm. P tot= 100 Atm. Pto t= 500 Atm. Ptot= 1000 Atm.

T c eV E £

120,000 552 383 261 221

100,000 363 210 167 154

80,000 188 153 117 93

60,000 129 89.4 63.5 55

40,000 55 42.9 31.2 28.2

20,000 16.6 9.1 4.6 3.5

8,000 .92 .31 .17 1.3

5,000 4-10-2 10-2 7-10-3 5-10-3
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4. DISPERSION RELATIONS FOR SOUND WAVES IN FISSIONING URANIUM PLASMA

The first step in our analysis is to derive the dispersion relations

for sound waves in a fissioning U-plasma by linearizing the fluid equations in

the wave amplitudes. The plasma in which the waves propagate is assumed to

be stationary in time and approximately spatially homogeneous on the wavelength

scale of the waves being considered.

The fluid equations are (dropping subscripts u and

aN + a . (NV) = 0at ax

- - 3 1 [N NKT( + Z)] =0

bars on £ and

(4.1)

(4.2)

V * ) 03 NKT(1 + Z) + N + (1 + Z) NKT VDXL~K, f j x -~-.

(4.3)

+ Ne V Pfiss V (KRV T)2x - Pfiss --

= N Novo0 Q

(4.4)

KR are given fns of T, N

Now write the fluid variables as

- +

where Pfiss

Z, £,
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N = No + N1

V = O +V

T = T + T1

Z = Z
o
+ N

1
Z

N
+ T1ZT

c s= o + N1EN + TleT

(4.5)

where ZN = (3Z/3N)N=N T=T etc., and the equilibrium state is denoted by

subscripts o and perturbati8 ns by subscripts 1.

The linearized equations then follow as,

aN1 3

at + No ax 1

t- - 1 a L. NiKTo (1 + Z
o
+ NoZN) + NoKT

1
(1 + Z

o
+ ToZT) = 0

3t MN- xo o

3 3 [N1 KTo(l + Z
o
+ NoZN) + NoKT (1 + +

2 3t

+ at [ N1 + NoNlEN + NoTlT] + Ne V

+ 5 (1 + Zo ) NoKT a N fiss, + K(1 0 o x ' x -l - No PfissO RI
- ~~~0

(4.6)

(4.7)

ToZT) ]

V 2 T
1 (4.8)

Next, consider Fourier modes

(N1, V1 , Il ) -, (N1, Vh, TI) ei(k x-t)

J



- wN1 + No k- V1 = 0

- V + MN k (AN1 + BT1)
0

- W(3 A2

+ T1 

+ Co + NoON )+

= 0

Pfisso 

- W(2 B + NoET) - ik2 KRo

2 (1 + z ) NoKT0 + NoEo] k- 1

where f A = KTo (1 + Z + NoZN)

B = NoK (1 + Z
o
+ ToZT)

Now from (4.9)

No
N1 = j k V 1

so (4.10 and (4.11), become,

-w V1 +M k1 MW 
B T

(k-V.) + k MN
C

(2 A + co + NOEN) + fi,o + 5(1
w 2 + Zo)NoKTo + Nool

(4.14)

3 B + NoT) ikKRo0 T - 02

ERJ A R INC.

Thus

22.

(4.9)

N1l

(4.10)

1+ = 0 (4.11)

(4.12)

0 (4.13)

k-Vl - N o

+ T1 1 = O
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Eliminate T
1
from (4.13)

- V 1+ A k (k V1 ) ' - - O0

The modes all have V1 along k so that we can take k- and cancel k-V

thereby obtaining a dispersion relation

+ LAk) {- (32 B + NoET) - ik
2
KRO }2 k2 Br ( 

+ iss + (1 + Zo)NoKTo + No0 = 0 (4.16)

This dispersion relation is a cubic in w and can be written,

w3 (B + No
T )

+ 2 ik2 KRO + w M No

T

2 6T>+) ± RO -M (oT

+M (co + NocN) MNo [ 2 (1 + Z )N KTo + Noo] (4.17)

M KRO + k2B fisso
M RO PMN0

Free Sound Wave Case

If KRO = 0 and Pfiss,o = 0, (4.17) becomes the relation for a

simple sound wave (except for the peculiarity of a changing degree of ioni-

zation in the U-plasma as the temperature fluctuates). In this limit we

find

w = + k V
s

((4.18)
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N ET M (C + N ) + M [2 KTo (1 + Z ) + o] }

{2 B + NOET}

where V
s

is the sound speed. Note also that dw/dk = w/k in this case.

If we use A

written in the form

and B given by (4.12), the sound speed can be

Vs = (\KTO
3 (1 + Z ) -
2 o 

3 NoZN 3 ET (1 + Zo + NoZN)t

5KT + 5K(1 + Z
o
+ ToZT) I

(4.20)

3 3
~ 2

ET
K(1 + Zo + ToZT )o oT~ U2

General Case including Fission and Radiation

Two fairly simple limits can be extracted from the cubic (4.17).

The first corresponds to the case in which the competing effects of radi-

ation and fission nearly balance. The result is a growth or damping of the

wave that is small. Thus we can write

R + WI = kVs + I

in (4.17) and treat wI as small (this gives an exact condition for the

critical wavenumber for which wI changes sign). The cubic can be rewritten

3B+)T o (2 k2 V) 2 Aik2KRO k
2

BiPfiB + N
-

s + ik 2 KRO M MN 0 (
0

(4.21)

4.22)

V
S

(4.19)



Linearizing in WI gives

i - k2V2 + ---AkM

I 2N) (4.23)
3Vs2 (B + 3 )

The system is unstable if the numerator of (4.23) is positive.

There are two cases for which this is theoretically possible, namely

kl < k =P fiss'o for Vfs >
< kcrit ( s M

KRO MN
°

(V( A
(4.24)

fkl > 0 for Vs < A/M

The inequality V2 > A/M can be written

NoON 3
1 + Zo > -T- + 2 NoZN (4.25)

The first range of unstable waves with wavelengths greater than a critical

wavelength is similar to that found by Becker and McNeil. The expression

(4.24) for the critical wavenumber, kcrit' at which waves go from stable to

unstable is exact, but the growth rate m
I
for marginally unstable waves is an

approximation which is valid for |wII << IkVsl. It will turn out that

VS > A/M, i.e., the inequality (4.25') is satisfied, so that only the first
part of (4.24) is of interest.
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The second limit that is easily extracted from (4.17) is the

small k result. We see from (4.17) that w + 0 as k + O. If we assume for

small k that w - kn (n >0), the various terms in (4.17) are of order k3n,

k2+ , k2 n+2, k4, k2 . As k + 0 only the first and last terms survive.

Retaining only these two terms and noting i'/ 3 = (; + i)/2, we find the

small k limit,

(v + i ) k2/3 2B Pfiss,o (4

23MN(B + 2 ET)

In this case we note dwR/dk = (2/3) wR/k -+ as k + 0

The results (4.23), (4.24), and (4.26) can be expressed in terms

of our original variables by eliminating A and B using (4.12). They become,

i (1 + Z T fisso NRO V
s

O (1 + Z
o
+ N (

o 0 T MN0 N K N

WI ( 2 ET

i c k 2

crit 

3 NoK [ 1

l + Zo + ToZT +

1.26)

.27)

RO MVs N
SS( ,~ N

+ Zo + ToZT +- 

(marginal instability)

(4.28)

P2 Pfiss,o l/3

3 i3 MNoo] = WR + imI = ( 2 i ) k2/3 3 MoT

1 + 2K(1 + Zo + ToZT )

(small k)

26.
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K (1 + Z
o
+ ToZT) fisso

o T0 T M+M'
kcrit K KT

KT( + z + NOZRO s M o + N)

(exact)

The behavior of |wI I is shown below in Fig. 4.1. The maximum growth

rate is approximately the result obtained by setting k = 0 in (4.27).

IW I

kcrit
k

Figure 4.1. Schematic plot of the growth rate of unstable
sound waves in a fissioning U-plasma as a
function of wavenumber.

E VRJA R

27.

(4.29)

--- ~~~~~~~~~~~~~~~~~~~~~~~~~
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5. NONLINEAR BEHAVIOR OF UNSTABLE WAVES AND THEIR LIMITING AMPLITUDE
IN A U-PLASMA SLAB

Linear analysis shows that a range of waves with wavenumbers

k < kcrit are unstable. The next question to answer is the limiting ampli-

tude reached as a result of such instability. The principal damping mechanism

that finally limits the growth of the waves is their mode coupling to that

part of the spectrum that is radiation damped. This mode coupling should pro-

duce a steady spectrum of oscillations in a U-plasma, and in this section we

shall compute this for a slab of plasma of thickness L occupying the space

O < x < L.

unstable __
waves

LT

L

radiation
H--- damped

waves

',> energy
flow~I\

kcri t
k

Figure 5.1.

In order to derive equations for the nonlinear wave amplitudes
(7)the multiple-time-scale form of perturbation theory will be used

(which is similar to the Bogoliubov-Krylov-Mitropolsky method) through

terms of second order in wave amplitudes. Thus we express the fluid

variables as

.y (A V U ;
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N = N0 + CN 1

T = To + C T1 (5.1)

Z = Zo + C(NiZ
N

+ T1ZT)

£ = c o + C(N1E
N

+ TlCT)

and attempt to find an asymptotic solution correct to 0(C2). The parameter

C is introduced for bookkeeping purposes and is set equal to unity later.

The problem is treated as one-dimensional. Second-order derivatives ENN'

ZNN' ZNT' etc. will be neglected.

Zeroth-Order System

The steady-state slab of U-plasma must satisfy the zeroth-order

equations

0 L

x

Figure 5.2

K

I
III

!\

29.
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NoKTo (1 + Z
o
) = const.

fiss,o + K RO

(5.2)
= P0

axo) = O (5.3)

The first complication is now apparent, namely that the zeroth-order slab

is necessarily inhomogeneous if Pfiss X 0. The effect of inhomogeneity

will be neglected in this analysis. It will be treated at a later date.

Equations to 0(C 2)

Substituting (1) into the exact fluid equations and retaining
terms of 0(C 2) leads to a system that can be written as,

N1 V _
-t
'
+ No 2x :C 

avl aN + aT-3Vl x1 1+ b =
t+ a T+ a 2x - C

T1 av1- + =+

+ d at, + g Ix = CA + C eN + KR
3t ax 1 RO

(5.4)

(5.5)

(5.6)
a2 T1

ax 2

where we have chosen to treat the combined effect of fission and

radiation on the wave as 0(-C) and have neglected the inhomogeneity of

No, To , etc., and defined

TERJR

30.

and

INt
c tat
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KT
a = MN (1 + Zo + NoZN )

0

c = [3 KTo (1

d = [3NoK (1 +

b = M (1 + Z
o

+ ToZ T )M o0 0T)

+ Zo + NoZ N)

Zo+ ToZ T) +

+ No+ NoEN]

NoST] (5.7)

e = Pfiss,o/No

59 = 2 (1 + Zo) NoKTo + Noco

The quadratic terms p, p, A on the right side of (5.4)-(5.6) are given

by

P a (NlVl)
3x 11 (5.8)

1
= MN

°
a [N1KTl (1 + Z

o
) + (NoKT1 + NlKTo)(NIZN +

ax [NKT0 (1 + Z o+. NZN) + N0 KT1 (1 + Zo + ToZT)]

- V1- V ax

EROIR

31.

N1

MN2

TlZT)
]

(5. 9)
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= - [ [32 N1lKT1 (1 + ZO) + 2 N1KTo (TlZT + N1ZN)

+ NKT1 N2)Z+ 3N KT1 (TlZT + N1ZN) + Nl (TlT + Nl

-V 1 ax 3 (1 + Z
o
) K(N

1
To + NoT

1
) + 3 NoKTO (NlZN + T1ZT)

(5.10)

+ N1 o + NO (NlN + T1CT)]

- 2 (NlZN + T1ZT) N KTo ax2- +LZ)NKT 0 - (1 + Zo)(N1KT° + NoKTl )

av av1
- No (NICN + TlT) ax - Nl1 o ax

Next take 3/3t of (5.5) and eliminate N1 using (5.4) in both

(5.5) and (5.6):

V1 + a - -x NO a-x 

a3i
+ =

ax

+ d + 
+ d ftl+ g 3x

(5.12)
CA + (eN

1
+ KRO a3x2

Using (5.12) to eliminate T1 from (5.11) then yields the basic nonlinear

fission-driven wave equation,

VERJO R

A

(5.11)

aV1
ax

avl
No ax



aV 32V1

s ax 2

,| - mode

C x (bc) a)3x (

C ax (Nle + KR

(fission)

coupling -----

b a

a2T \

(radiation)

where the sound speed Vs is

- c N ) b + a N

which readily reduces to equation (4.20) in section 4.

Now in lowest order (superscripts (o)) the general solution to
(5.13) for the slab (which satisfies the boundary condition V7 = 0 at
x = O,L) is

N (o)

v(°) o i e nt sin knX. Vn e n
n= -co

Nn 3 iW t
N n) ei cos knX, n • 0

T nTn

YEA/ R INc.

32V
1

at2

33.

(5.13)

Vs = l(g (5.14)

where

(5.15)

(5.16)



_ wn = _ Vs
L ' n ns

= - V
n
,

N
N =N-n 

7TnV
s

L

= Tn
. n

iN0
n Vs n

Tn = in/ Vn )
Vs

We must now derive

O( ).

equations for the complex amplitudes Vn through

Multiple Time Scale Analysis

Our objective is to find an asymptotic solution to (5.13) correct
1

through 0( ) and one that remains so through times of O(C- ). To do this

we use a multiple time scale form of perturbation theory(7 ) Writing

(5.13) as

aDvl

at2

a2V
V2 1 =

s 3x2
L (5.20)

we seek a solution of the form

V = VI
O
) (t, ct, c2t, ..)+ ECV(l ) (t, t, ..)+.... , (5.21)

ERJi R INC.

34.

kn

V-n-n

and

(5.17)

(5.18)

(5.19)
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where V() is chosen so that it reduces to (5.15) as C+ 0. Similar expan-
sions are made for N1 and T1 and the boundary conditions must be satisfied

through all orders.

Two-Mode System

The critical wavelength, 2 rr/kcrit, above which instability occurs
is fairly large so that it is expected that many systems will contain at

most only a few unstable modes. In order to simplify the analysis we shall
now treat the case in which only the fundamental, k1 = W/L, is unstable and

the second harmonic, k2 = 27/L, is radiation-damped. Since higher harmonics
(n : 3) are progressively more heavily damped than the n = 2 mode we can
neglect them and approximate the system by a 2-mode system with one mode

unstable and one mode damped.

unstable

IV1
energy

IV2

kc

damped

V
3

0
-1 k

Figure 5.3

In this case

V(0)1
2

= -2
n=-2

iwnt
Vn e sin knx

and to O(c) equation (5.20) becomes

(5.22)
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2at _ ,( ) /___) 2 -Vs V(1) L(O) (5.23)
¥t -(-Ct) V1 t2 aX2

where L(O) = L(N(), V(°) T) ) . We must use the Ct dependence of

V(O) to cancel those components of L(o) that would solve (a2/at2- V2a 2/ax2)

L(resonant parts 0. These components, unless canceled, would giveresonant parts

unwanted secular (t or x-proportional) terms in V1

Equating the first term on the left of (5.23) to the resonant

terms of L(O) we have

Terms of L(°) of the type

2i Z n a'Vn i' nt e sin knX = s+ t(5.24)

sin (kl 2 x)e 1,2.

where

L ) -a Nle + K 2] (5.25)d a x d ax at d x NlX KR0 x2

Evaluation of Resonant Terms in Eq. (5.24).

By inspection of (5.25) and (5.8) - (5.10) for 9, X, A, we

see that the following terms must be evaluated:

2 (NlVl) axat (NTl), axat T

atX 1 3x) at aNt 1 

aT x ~-F T NI ax ' T Vl ax
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x (T1 ax )

ax(Tl 3x)

3ax ( 1 ax 

' X(N1 ax )

(5.26)

where the small density derivatives ZN, c
N

will be neglected.*

The resonant terms will be extracted from the first of these in detail and

the result for the rest simply listed since they all involve similar cal-

culations.

Thus,

32 (NlVl) =
3x2

a2

ax 2

2

n,m=-2

i (wn+wm)t
NnVm e cos knx sin kmx

Noting cos x sin y = [sin (x + y) - sin (x - y)]/2 this becomes,

1
= -T ZnNnVm e

contributions

to sin klx

i(wm_+wm)t

n

n

n

n

"' (kn+ km)2

= 2, m = -1

= -1, m = 2

= -2, m = 1

= 1, m = -2

sin(kn+ km)x - (kn- km)2 sin(kn km)x]

- .2, m 1 s3in t
n = 2, m = 1 I sin klx e

nonresonant.

Typically (see section 6) TeT - 12 10- 11, NeN - 2 10
-
"

TZT ~ 2.6, NZN - 0.26.

! Fn
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contribution

to sin k2x

n = 1, m = 1

| n = -1, m = -1

n = 1, m = -1 sin k2x eOt

nonresonant

Extracting the resonant terms leads to,

) -- N 1 N 2eiw lt
(N1 V1 ) -* - 1 (N2V_1 + N_

1
V2 ) e k' sin klx

+ 2 (N_2V1 + N1t_2) ki sin klX e+ 1 (N V + N ?2 ) k' sin k1x e 1

Y (_2 V1 1 V-2 k1 1-wl

(5.27)

1- (Nv ei2t- Z (N
1
v - N v 1 e- 2 )k2 sin k2x

= - - (N2V_1 + N V2)e 1 k sin klx -
2 -I + N_1V 2 ) e sin k1X -

k2 N1V-2- 
iw 2 t
e sin k2x + c.c.

The remaining terms of (5.26) can be listed:

axat (NlTl) + - 2 wlkl (N2T-1

i i 2t
2 NlTl2k2 e 2 sin k2x

iwlt
+ N_1T2 ) e

+ C.C.

xat (T) + -- iwlkl T2Ti e 1D3xt I 2_1 sin klx - TlW2 k2
iw2t
e sin k2x

+ C.C.

38.

32

ax2

sin klx

(5.28)

(5.29)



-1(kNT_-k _i t
2 (klN2 T-l - k2 N iT 2 )w1 e

i iw2t
2 NlT1 e klw2 sin k2x

a9 (N1 a-- ) 
iwlt

- 2 klN 2N_l e sin klx

i w2t- 2 kl 2N21 e sin k2x + c.c.

iclt ikl 2
a1sin klx + 2 V e

iw2 t
sin k2x

+ C.C.

k2 iwt
2 (V2N_1 - 2 V 1N2 ) eiw sin klx

iw 2 t
- VI1N1 k~ e sin k2 x + c.c.

k; iwlt
> 2- (V2 T_1 - 2V 1 T2 ) e sin klx

2 ( 32t )
- V1T k1 e sin k2 x + c.c.

at (Nj~- -t-N

INC.

3Tl 
ax

39.

sin klx

+ C.C. (5.30)

at -V1 aTx ) iklw1

2 V2V_1 E

(5.31)

(axv(

(5.32)

(5.33)

aN1/
ax

aT''

axax (Vl1

(5.34)
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3V1 k 2 (T - 2T 1V2) e 1 sin k x

/ ak2 iw t

Ti ax (T2V 1 - 2N 1 V2) e 1 sin kx

im2t
- N1V1 k' e sin k2x + c.c. (5.35)

2 + KiR tt

2 I imi 2 tt- NiV 1 k{ e sin k2x + c.c. (5.36)

We also require for the last part of (5.13),

32TeK1 iwlt
3x le + KRO X2k T1) e sin klX

(5.37)

+ 2k1 (-eN2 + 4KRokIT2) e sin k2x

The remaining algebra is tedious but straightforward. It con-

sists of finding equations for 3V1/3Et and 3V2/a3t from (5.24) using

(5.25)for L, (5.8) - (5.10) for 9, A,- , together with (5.27) - (5.36)

and the relations (5.18) and (5.19). The resulting equations become,

av

( t = y1Vl + aV2 V_

av2
at =- Y2V2 +2 aV
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where

seNo

LVS

VeN
0

Lvs

vsk KRO (1- k2 KRb

V
- 4 k2 KR s5I RO b

aNO)

v2 
s

( aNo]
V )

5

M TZT + (1 + Zo)(o T~2M~~ Loo 00( o[E ITE)]

KRO (1 N)(k2 
2d V criI 1

5

= RO aNo k2 - 4k2
2d V2 rit 1S

N0

Vs

- KZ V3N ° T

T s Mb2
( a-°N 2

Vsd2 NO aNo)

V2

- + [ - (1 + Zo) KTo] 2V

Nonlinear Behavior of Unstable Waves and their Limiting Amplitude

We now have a simple pair of equations describing the nonlinear

evolution of an unstable wave of velocity amplitude V1. Equations (5.38)

contain the destabilizing effect of the fission power density together with

the stabilizing effects of radiation diffusion and mode coupling to the

"nearest" damped mode V2 in wavenumber space. The smallness parameter c can

now be set equal to unity and equations (5.38) for the wave amplitudes

become

b
Y1 2Vsd

b
7 2 -2Vsd

k21
= 2wlda 2Xad~~

(Mb + 25 T) (5.40)
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9
1

3t = y1V + UV2V-1

3V2

t- -Y 2 V2 + UV2

(5.41)

(5.42)

Now by adding V1 times (5.41) to V1 times (5.41) and noting

from (5.17) that V 1 = -V1 (and carrying but a similar operation for

(5.42)) these equations become

at IV112 = 2y I V1 2 - [V12V2+ V1V21

(5.43)

2 2 + + st IV21 : - 2Y21V212 + a[V2v + v2 fV IV 

Writing the complex amplitudes as

further to

iel,2
V1,2 : IV1,2l e 1 , these reduce

at vl12 = 2y11Vi 1
2 - 2alV1l 2 1V2 !cos (02 - 281)

S-T 2 =2¥

(5.44)

- 2y2 1V
2
12 + 2alV 1v21V2cos (62 - 261)

.a IV 2 i
'-'t IV21 2

42.
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Iv21

t

Figure 5.4

Suppose now a wave V
i
1 starts to grow out of the thermal noise

and becomes of large amplitude. Since thermal fluctuations V2 exist with

all possible phases e2, the mode V2 which begins to grow due to mode

coupling will be that for which the mode-coupling term in the V2 equation

is largest, i.e., the mode V2 with a phase such that cos(%2 - 2e1 ) = ±1.

The limiting amplitudes at which a steady state is reached follow from

(5.44) as

lV112

I V2

- Y1Y2

a2

(5.45)

where Y1, y2 and a are given by (5.39) and (5.40), and the negative sign

(cos(62 - 201) = -1) has been taken since c is negative.

Y1

-C
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Energy Density of a Nonlinear Wave

From (2.31) the averaged wave energy density follows as

Wwav < M N V12 + K T(1 + Z) + (N K T + No K T1 ) T1ZT

(5.46)

+ N1 T1 ET >

Now Vl(fundamental)
iWl t

= Vle sin klx - V 1 e

= 21VlI sin klx cos (e + wit)

where we used V_1 = -V1 and set V1 = IVlleie. Thus,

< V 2 >IV2 = IV12

< NlT1 >
N= I V1 2 aN

: IV112 \ v- /

<T2 > = I T1 2

where <> denotes a space and time average. Finally, using the relations

(5.18) and (5.19) gives for the wave energy,

-i ilt
sin klx
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W MN + + N K ZT 2
wave V / 02 0 T blIV

S S

It is useful to compare this with the thermal energy and define

the ratio

Wwave
R 1+

-~NoKTo(I+Z o
)

wave energy( thermal energy /

21V1 12

3NoKT o(l+Zo)

°MN d (1 vaN)
2 MN0 b V2

s
+ o VKZT aN v 2

5

(5.48)

A similar expression exists for the second harmonic, etc.

In the next section some numerical examples will be given based

on the various formulas derived in this and the previous section.

45.

(5.47)
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6. NUMERICAL CALCULATIONS USING PLASMA PARAMETERS CORRESPONDING TO THE
NASA-LEWIS GAS-CORE DESIGN ENGINE

In this section we evaluate the various expressions for the growth
rates, limiting amplitudes, etc. for a uranium plasma with characteristics
corresponding to the NASA-Lewis gas-core design engine. The parameters were
kindly supplied to us by R. Ragsdale of NASA-Lewis and are listed below:

T

Pfiss

Vu

I

= 50,000 °K

= 1.3 · 1010 ergs/cm3/sec = power density

=4.45 .106 cm3 = U-plasma volume

Mtotal U = 2.7 · 10 4 gm. = total U-mass in reactor

p = 6.07 - 10 3 gm/cm3 = U-density

Nu = 1.5 - 1019 cm- 3 = U number-density

PTot = 400 atmospheres ' 4 · 108 ergs/cm3 = pressure.

For the Rosseland opacity we use the

The mean Rosseland opacity is

calculated data of Parks et

kR = 2 l104 cm2 /gm. for Ptot = 4 · l08, T = 5 104 °K 

i.e., since p = 6.07 10-3 cm-3 it becomes

kR 1.2 · 102 cm-l

when expressed as an inverse length in the plasma.

The corresponding radiation diffusion coefficient follows as

KR = 6k 3.2 ' 108 erg cm
-
' sec

-
' deg-'

3kR

where a is the black-body constant.

(6.2)

(6.3)
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Evaluation of mean Charge, Z, mean Ionization Energy, c, and their

Partial Derivatives cT, ZT, cN , ZN

The following quantities can be read off directly from the

UPLAZ-2 graphs shown in Figs. 3.1 and 3.2 for a plasma at 50,000 OK and

pressure of 400 Atm.:

= 48 eV E 7.7 10-llergs

J Z = 3.8

(6.4)ET = 2.4 · 10-15ergs/deg.

ZT = 5.37 10- 5 deg-'

TET

TZT

= 1.2 ' 10-10ergs

= 2.68

The derivatives ZN (- aZ/aN) and EN are also of interest. They

involve slightly more calculation since the graphs in Figs. 3.1 and 3.2

give Z, E as functions of P, T instead of N, T. The conversion can be made

by noting

aN aN- Z (NKT(l + Z), T)
~_N a .N

aZ [KT(1 + Z) + NKT a ]

from which it follows that

N (1 +
N Z =

N 1 - NKT

N N = P 3 L1 +

Z) KT

aP ]

aZ
*P Pz

1 - aPJ 

(1 + Z - P ap

(6.5)



in Figs.

gave

To obtain p an'd Zp we make use of graphs of s(P) and Z(P) shown
6.1 and 6.2 which were constructed from Figs. 3.1 and 3.2. These

P Ep

P Zp

= 12.6 eV - 2.02 · 10-1l ergs

= .25

so that

N ZN = .264

N cN = 2.13 * lO-llergs.

We are now in a position to calculate various quantities of more direct

physical interest.

Sound Speed

The sound speed as given by (4.20) is

( 5KT o½Vs: ( 3M ) I
2 (1 + z ) -

3NoCN 3 
T

(1 + + NoZN)

5KTo 5K (1 + Z
o
+ ToZT )

3 ST
3 +
2 K (1+ + Z + ToZT)

Noting KTo = 7 · 10-1 ergs, and

KT P
M p(l + Z)

ERJI R INC.

I (6.8)

(6.9)
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and using the values (6.1), (6.6), (6.7), we find

Vs - 2.73 105 cm/sec.

Critical Wavenumber

The critical wavenumber for instability is given by (4.29).

evaluate kcrit we need the quantity,

V2 A
s M

NoUN
KT

i3+ K(l + Zo +
0

(6.10)

To

3 NoZN
2- (6.11)

ToZT) i

It then follows from the above numerical values that

(1 + + ToZ) fiss[23
ET

kcrit 
T KRO [1 + 

28.4 Pfi

= I .35 T KRORO1.32 ' 10'1 (6.12)

The critical wavelength above which waves are unstable is thus,

Xcrit
2Tr
kcritcri t

- 47.5 cm.

51.
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Asymptotic Growth Rates

For small k the growth rate in (4.28) becomes

X
I

= 4.1 103 k2/3

At the other limit, i.e., near marginal instability, we note

mI = 1.25 102 (krit - k2 )

where we used Vs - A/M 4.5 10

An estimate of the maximum growth rate is

WI Max 1.25 - 102 k 
2

I Max cri t - 2.18 sec-l

These various values of mI are plotted in Fig. 6.3.

W 1

2

1

I

I 

I I I I A I

.<,I 

.05 .10
k

Figure 6.3. Growth rate of unstable waves as a
function of wavenumber.

52.

(6.14)

(6.15)

(6.16)
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We see that the growth rate is rather slow, i.e., it would typically

take a few seconds for the unstable waves to e-fold up in amplitude to their

saturation value. This is to be compared with the real part of the frequency,

which is of order (not exactly equal to) kcrit-V
s
- 3.6 · 104 sec- 1.

Nonlinear Amplitude

The limiting amplitude resulting from instability follows from

(5.45) as

aNo \
KRO (1 _ Tv )

[ OToZT + (1 + Z)

- KT (1- K, ZT Vs Mb2

aNs 2

5

k [(k k)(4k - k crit)

(E o - TOOT)]

Vsd- - N VN - Mb + 2 ET)- i - T No s +
Vs

Nob
0
2V5 : +2 ( + Z) KTo

We require the following quantities:

IV11

Vs

(Y1Y2) ½

l.-t-

where

K N0
{ 2M Vs

(6.17)



54.

E Rf/iR fNC.

[£oToZT + (1 + Z)(so - TeT)] = 0

aN0

-J

s
aN0ots

.11

=3.97 · 10- s

NMb 10.45 

Mb = 10.45 ' 10 '1 6

MV2
s

= 2.92 10-11

NoVs { }NOs

K MV oToZT
2 MV2 I

+ (1 + Z)(Co - TO T)]

0

MV2 E
s T

- K Z m22
M2 b2

( V 2)aNO

S
0131j

d
2N0

®

aN o 
5~ (1 - aN° A(Mb + 52- PT
4 \Vs /

®

Mb s +5(1 + Z) KTo]

the various terms as labeled have values

Writing
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0

- 5.83 l-108
15

- 1.98 ' 10-

- 2.77 10-6

- 2.88 - 10-15

Thus

1 {}
NoVs

-5.14' 10l T

from which it follows that

IV11

V 1.67 10 cri t crit)

Ratio of wave energy to Thermal Energy

This ratio, which is given by (5.48) is

R = 2 N2 MV 
1 3 r P

l+ d
NoMb

(1 aNo\ 3
+3K2 ZT

where for the plasma parameters listed in this section the terms in the

C- 

(6.19)

(1
MV2

M2b2

aN
o

V2s 

Q

®=

C)=
C)~
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square bracket are

[ ] a .5 + .418 + .003 .921

Thus

1 0thermal energy 2 (6.20)

where IVll/Vs is given by (6.19).

Concluding Numerical Comments

The above formulas (6.19) and (6.20) apply for a slab in which

a single mode of wavenumber k1 is unstable due to coupling to a damped

mode k2. Now recall that k1 = rr/L must satisfy kl < kcrit < k2 = 2k1

in order for our two-mode analysis to be correct. Choosing for example

k
I
= 2kcrit/3 (i.e., corrresponding to a plasma slab of thickness

L - 36 cm.) gives IV1 l/Vs ~ 2 10- 4 and R - 3 * 10-8.

The waves that result from the instability are thus seen to be of

negligible amplitude in this case. This is because they have a relatively

slow growth rate (wI/kVs ~ 104 ) and lose their energy via mode coupling to

the radiation damped modes. For a thicker slab of plasma several modes

become unstable and the algebra of the analysis becomes more complicated.

However this is unlikely to change the above conclusion provided only a few

modes are unstable, i.e., provided L does not exceed a couple of meters.

For example one would expect the energy in the fundamental to increase as
L5/2 (assuming a Kolmogoroff spectrum) which would increase the pressure

fluctuation level to R - 10'- for a slab of thickness 2.4 meters.
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7. DEPENDENCE OF THE FISSION POWER DENSITY ON THE FLUID VELOCITY OF
THE URANIUM PLASMA AND ITS ROLE IN THE INSTABILITY OF SOUND WAVES

The density of thermal neutrons within the reactor cavity consists

principally of neutrons returned to the cavity from the surrounding moderator.

Due to the open nozzle of the rocket chamber there will be an effective aver-

age drift of the neutron gas out of the nozzle along with the hydrogen propel-

lant. For purposes of calculation we shall assume that the thermal neutron

flux in the rocket chamber can be represented by a Maxwellian distribution,

N (v- v)
2

fn exp 2 (7.1)
(27Vn)3/2 2n

where V
n

is the drift velocity towards the nozzle and v
n
the neutron thermal

velocity. The space dependence of N or Vn will be neglected for the present,

but should be discussed in a later study.

Similarly the uranium plasma can undergo fluid motions with

velocity V within the reactor cavity and the appropriate distribution function

for the uranium nuclei is

N (v - V)2

u (2exp- (7.2)
(2Trvu) 3/2 2v Z

Now due to the dependence of the neutron-induced fission cross-

section on the relative velocity between a neutron and uranium nucleus, a

coupling can occur between the plasma motion and the fission power density.

The purpose of the analysis in this section is to examine the consequences

of this coupling for the question of instability.

The general expression for the fission power density can be written
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fiss ffdv dv'jv - v' Q fn(v) fu(v') a - v )

where Q is the kinetic energy in fission fragments in the plasma rest-frame

(recall that in the energy equation we took the moment using - M(v - V)2

so that Pfiss is the rate of increase of thermal energy in the uranium plasma).
The integral involves the Maxwellian distributions above in which it is of
interest to note that the thermal velocities of the neutrons and uranium
nuclei are comparable and the drift velocities V and V are subsonic.-n

The integral required depends on the neutron absorption cross-
section aa. This cross-section has a large number of resonances and it is
usual to model these by a single resonance level using the Breit-Wigner
formula (see Blatt and Weiskopf( 9)

rr
aa = 7FX2 gJ ny (7.4)

(Er - Eo)2 + ()2

where

Eo = energy of resonance model for nucleus,

Er = kinetic energy associated with relative velocity
between neutron and nucleus

¥y,r
n

= radiative capture and neutron widths

and r = r + n .
y n

Now the energy E
o
of the lowest neutron resonance is about 1 eV.

In this analysis we will assume that the thermal neutron temperature is below
104 °K in which case aa becomes approximately constant. This greatly simpli-
fies the evaluation of (7.3) which then becomes,
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Pfiss (2TVn) 3/2

aaQ N

(2NV2)3/2

N

(v-Vn)2

/ dv dv'Lv - v'e 

(v'-V) 2

2vu2
e

= jdv dv' I- V'- V + Vle

V2

fdvlv - Ale 2v

V 2

o 2v2

: 4-r"fvdv (3V 2 + A2 )e 2
n

0

we find

= NNoaQ 1 323 {6 v2
:a (27r)3/2v n

+ IVn - Vl2 +

Since vn, vu >> 1YI, IVl the expression

Pfiss fiss,o

for Pfiss can be written

+ V P fiss,o

where for the above assumed cross-section

aPfiss,o
-aV- V=o

-2Vn Pfiss,o

3(2vn2 + vn2)

V2 V 1 2

2v2 2V2n U

Noting

Pfiss 3v u 2 } (7.5)

(7.6)

P'
-fiss,o (7.7)
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It should be emphasized that the general form (7.6) remains correct for the

more complicated functional dependence of ca as given by (7.4), but Piss ,o

would become then more complicated. It is interesting to note that a linear

term in V only occurs if Vn X 0, i.e., the neutron population is drifting

through the uranium population. The instability that results (as will be

seen in the next section) is analogous to the two-stream instability of

longitudinal waves that occurs in plasmas for which relative drift between

species is present.

Dispersion Relation for Sound Waves including the Velocity Dependence
of the Fission Power Density.

The fluid equations and linearization proceed as in section 4.

Retaining the extra term (last term of (7.6))the linear system of equations

becomes,

aNI

at + No ax - = O

aVl
at

1 a
MNO ax [ N1KTO

(1 + Z o+ NoZn) + NKT1 (1 + Zo + ToZT)] = 0

(1 + Zo + NoZN) + NoKT1

+ at + N + NoN + NoTl T3T [ I] 

(1 + Zo + ToZT)]

+ (1 + Zo) NoKTo ax .

a
+ NoEo ax

N1

-1 N Pfiss,o -l1 '-fiss,o KRo 2T1

60.

2 at NlKT
Z 2 _ 

(7.8)

(7.9)
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As before we set

(Ni,Vi,T1) (N1,Vl,Tl)ei(k xt) , (7.11)

and eliminating N1 the transformed equations become

BT
V1 + k(k Vl) + KMN (7.12)

W
1

- Mwkl~ -MNO

k'V
l

N- N( A + E0 + NoN) + ssO + 2 (1 + Zo ) No KTo + N o 1

+ i . _P'o + T - ( B + NoT) i k2Ko 0 (7.13)
+ i V1 2--fiss,o

Eliminating T1 from (7.12),

-k + i V1 -fiss,o

- Vi + AM k(k.V1) _ k MNo : 0 (7.14)

Now the waves are longitudinal, i.e., k is parallel or antiparallel to V1.
Choose V1 as x axis and set k - (k,0,0) (k has a sign). Then

1 *fj'ss ,o/lk * V = Pfisso cos 0/k, where 0 is the angle between V1

and P'fisso' Taking k- of (7.14) then leads to the dispersion

relation

61l



-( B + NoT)

- No (2A + +NoCN ) + 52 (10 N ) W T~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

MNo Pfisso cos e = 0

This is again a cubic in w:

3 (32 B + N oET) + 2 ik2 KRo

+ Zo)NoKTo + N+oo 1

+ ( AK2 N 
+ ---- NM CT

K2B k2B 5 (1 + Z iBk
+ NEN M M 2 KT0 ( + 

MN0 Pfiss,o cos a0 

Aik4 K k
2
Bi CM KRo+ MN Pfiss,o =

0

The sound speed Vs can be defined as in section 4 and the cubic

rewritten

(2- B + NoST) (.2 - k2V2) + W2 ik2KRo
Bk

- i -M-0 ,fiss,o O

k2Bi
VN

o
Pfiss,o

ERJAR IAc.
62.

- i k2KRO 2

k2B
MN0

(7.15)

Ai k4KRo

M = 0

(7.16)

/ + A 2\
\ ) MW )
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Marginal Instability Condition

For the case that the imaginary terms are small in (7.16) we can

write

m = WR + iw
I

kVs + W
I

(7.17)

and derive the marginal instability growth

follows from (7.16) that,

rate by linearizing in w
I
. It

i (PMfisso

WI
+ VsPiPsso cosVs fss,o

i) - 2 +Ak Kro
) k2 V2K +s Ro M

3 V (B + 2NoET)T)( 

The unstable wavenumber range now becomes,

IkI < kcrit : {B (Pfisso + VsPfiss,o co ) }

r i kr(Vs )

Small k Limit

In the small-k limit the velocity-dependence of Pfiss does

not change the result found in section 4, so we again have

W = (V" + i) k2/32 [ 2 B Pfiss,o
1/3

(7.20)

3MNo (B +

ERJ R
63.

(7.18)

(7.19)
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General Comments

The growth rate (7.18) near marginal instability behaves as if the

fission power density was replaced by

Pfiss,o + Vs P' isso Cos 6

The velocity dependence of Pfiss thus has a destabilizing influence if the

second term is positive and is stabilizing if it is negative.

Now from (7.7) we see that

2VsVn Pfisso cosOiss~o ~cos s (7.21)
3(2vn + v 2)

Thus the forward cone of waves (along Vn) is unstable with growth rates

k

V
-n

and Vn < vn, the absolute change in growth rate for the unstable waves that

derives from this effect is fairly small.

Effect of the fluid velocity dependence of the Fission power density
on the Nonlinear behavior of Unstable Waves

In this section we carry through the extra term, V ' Pfiss,o'
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in the nonlinear multiple-time scale analysis of section 5. The nonlinear

sound wave equation (5.13) then becomes

32 v
1

at2

a2V l
V2 X

S ax2

mode coupling

£a (d b ) b a +_ 
-: _ _ (bca-aE3x -- a d x at

b { Nie + V- £ d ax e l Pfiss,o

(fission) (fission
Doppler
effect)

a 2T
1

+ K 2
Ro 3X2

(radiation)

If we make the same expansion as before, with a zeroth-order expression

for V
1
,

V(o) = V
n
e nt sin knx (7.23)

n=-oo

iWlt
it turns out that terms of the form sin klx e 1 occur in O(E) throughout

(7.22), except for the extra term involving P'i,0 This extra term only
fisso' iwlt

contains first harmonic components of the form cos k
1
x e Multiplying

the O(E) equation by sin klx and performing f Ldx, the effect of the

Pfiss,o term therefore averages to zero, i.e., for a bounded geometry it has

no effect on the nonlinear growth of waves.

The reason for this can best be seen by including the P'iss O

term in the zeroth-order equation and considering the equation

I (7.22)
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a2V a2V TV
1 - V2 1 + Va + = a , (7.24)

at 2 S a x2

where a = b P'fiss ,o/d, for the slab geometry. Substituting traveling wave

solutions ei (wt-kx) gives a dispersion relation

X = + (k2 V2 - iak) 2 kV (1 iak , (7.25)
2k2V2

so that a solution of wavenumber k satisfying (7.24) is

cat at

V1 - A e
2
V ei(kVt

-
kx) + B e e- i(kVt+kx) (7.26)

It is clear from (7.26) that the right traveling wave is growing

in amplitude (a > 0), and the left-traveling wave decaying. Now for a

bounded geometry with perfectly reflecting boundaries a standing wave con-

sists of a superposition of a right and left traveling wave. As the wave

traverses the slab thickness L to the right it grows in amplitude. Then,

after reflection, it decays an equal amount on traveling to the left. The

average effect is a zero growth for a standing wave in a slab.

In the actual case of a gas core nuclear rocket engine, the only

waves which can propagate freely out of the U-plasma without reflection,

are those propagating out of the nozzle. These will undergo at most only

a few e-foldings in the course of their transit across the U-plasma and are

not expected to be of importance.
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8. COMMENTS ON THERMAL FLUCTUATIONS IN A NEUTRON GAS AND IN THE DISTRIBUTION
OF FISSION EVENTS IN A U-PLASMA

The main point of the study described in this report is to calculate

the behavior of those unstable waves in the system that may become of large

amplitude. However it is worth noting that there is of course an irreducible

thermal fluctuation level in such a plasma. These thermal fluctuations pro-

vide the initial amplitude from which unstable waves may grow. Fluctuations

in the fission power density, although small, will be larger than is normally

the case due to the large amount of energy (200 MeV) released per fission

event.

Consider first the fluctuations in the noninteracting neutron gas

of N neutrons in a box of volume V. The neutron distribution function can be

written

F zl 6[x - Xi(t)] 6(v- V
i)

=1
(8.1)

Xi = Xio + Vi t, Vi = Vio = constant,

where X., Vi are the position and velocity of the ith neutron. Various

statistical quantities can be calculated using an ensemble function DN for

the initial particle parameters normalized so that

DN dXlo dVlo ... dXNO dVNO 1 (8.2)

and the s-particle distribution is defined by

fs (Xo, ... Vso,t) = VS DN dXs+l,O ... dVN,O (8.3)
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The correlation function of interest to us is that corresponding

to fluctuations in the neutron number density, i.e.,

Jdvr dv2 < F(l,t1) F(2,t 2)> -dv1 dv2 dX1 0 ... dVNOFF

N= V dVio fl (Vio)
0

6[1 - 2 io (tl - t2 )]

+ N(N-1)V dV
+ NV2 if dV-jo-*0-0

1 1

= 1 +o (tl-t2) 3

where No is the
number density.

(t 1 - 1 2 + E 
tI - t2 -1 

<6No 6No>

N2No

(8.4)

average neutron number density and 6No the fluctuation in

Assuming a thermal Maxwellian distribution for fl (normalized

to unity),

1

(27Vo2) 3/2

exp - v2

% 
gives

N
0

<6No(Xl, tl)6No(x2, t
2 ) >

fl (Vjo) fl (Vjo)

exp - -(L-t 2) -

L 2v2(tl-t2) (2ir) 3/2[Vo(tl-t2)] 3
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where v
o

is the neutron thermal velocity and No their average density.
For fluctuations at a single point (x

1
= x

2 ) we have,

<6No(l,tl) No0 (l,t2)>

N2
(8.7)

No(27)3/2 [vo(tl-t2 )1 3
0 0 . ) 

We see that this is small except for very fine scale fluctuations with

periods of order 1/Nol/3 vo = time it takes a neutron to traverse a mean

spacing between neutrons.

Fluctuations in the Number Density of Fission Events and in the Fission
Power Density

An approximate estimate of this-can be obtained as follows.

Write

Nfiss = no. of fissionS/CM3 /sec = Pfiss
Q

Thus in a volume k3 and time T the average number of fissions is k3T Nfiss.
Assuming these fission events are uncorrelated, the fluctuation in this

number is (Q3T Nfiss)½. The corresponding fluctuation in the fission power
density can be written

1

P f j 55 k 3 T ]

(8.8)

6Pfiss

Pfiss
(8.9)
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Now Q 200 MeV E

- 4.108 erg/sec/cm3 ,

6Pfiss

Pfiss

3.10-4 ergs, and if for example we choose

it follows that

1

[1.6 1012 T]½

The amplitude of 6Pfiss for some length and time scales are shown below:

k = 10- 2 cm, T =

= 10- 3cm, T =

10-2 sec, Pfiss/Pfiss 1-2

10
-
1 sec, 6Pfiss/Pfiss _ 10- 1

We see that the fission power density has a "grainy" fluctuation level that

is appreciable for length scales of - 10-2 - 10
-
3 cm, and for the time

scales above. For lower power densities this irreducible thermal fluctua-

tion becomes relatively more important. However, since they involve short

length scales it is expected that radiation diffusion will considerably

decrease the corresponding pressure fluctuations in the plasma.

VERJ4R

Pfiss

(8.10)
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9. CONCLUDING REMARKS AND RECOMMENDATIONS

The overall conclusions we reached as a result of this analysis

can be stated as follows:

(i) A range of unstable sound waves exists in a fissioning uranium

plasma in the wavenumber range k < kcrit (see 4.29). For para-

meters corresponding to the NASA-Lewis design engine the critical

wavelength above which waves are unstable is Xcrit = 27/kcrit
47.5 cm. Typical e-folding times are .5 sec. The mechanism giving

rise to the instability can be described as follows: Consider a

standing sound wave in a bounded region of fissioning plasma with

a constant background thermal neutron density. In the wave com-

pressions the fission power density, Pfiss' increases due to the

increased uranium density, and in the rarefactions Pfiss decreases.

This results in an increased pressure gradient associated with the

wave which in turn leads to a transfer of fission power to the

wave. It occurs because the wave compression tends to expand more

rapidly than it was compressed. However, competing with this is

the fact that radiation tends to transport the extra thermal energy

out of the wave compressions. Radiation diffusion smooths out the

temperature fluctuations of waves more rapidly the shorter their

wavelength. This results in a critical wavelength, Acrit' below

which waves are stable and above which they are unstable.

(ii) Waves that are unstable grow in amplitude until limited by nonlinear

effects. The mechanism that finally limits their amplitude is the

mode coupling of unstable waves in the wavelength range X > Acrit

to radiation damped waves in the range A < Xcrit' Our conclusion

is that this mechanism "turns-off" the instability after the wave
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amplitudes have reached relatively small values for most systems

of interest. Relative pressure fluctuations of order

6P/P _ 10 - 7 to 10-5 are calculated to occur for a slab of
uranium plasma with parameters corresponding to the NASA-Lewis

design engine. Consequently this instability is not expected

to present a control problem for this engine. It could become

a problem, however, if very large devices were designed. We

estimate that the pressure fluctuation amplitude would increase

as the 5/2 power of the radius of the uranium plasma core.

(iii) The dependence of the fission power density on the fluid velocity

of the uranium plasma in a cavity in which the neutron gas has a

drift motion out of the nozzle can contribute to instability.

The mechanism is similar to that for the above instability and

is analysed in section 7. It also gives rise to small-amplitude

fluctuations in the reactor cavity.

The role of spatial gradients in the neutron density and plasma

density has not been included in the above analysis. Since these gradients

may also give rise to instability we recommend that these be investigated as

a next step in this analysis. Further, the interaction between different

flow states of the uranium plasma in the cavity and the fission power should

be analyzed (e.g., the hydrogen flow may cause the U plasma core to circulate

in convective cells). A computer simulation of these reacting flow problems

would be of value.
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